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above, in which only the single inelastic scattering of 
electrons is taken into account, is successful at least 
qualitatively in explaining the experimental features 
observed for the H.K. lines. This is probably because 
any inelastic process of the electron scattering contribu- 
ting to formation of the H.K. lines can take place only 
at a small depth beneath the crystal surface as a result 
of the small extinction distance in the Bragg case, which 
is estimated to be of the order of ten Angstroms at 
most for lower-order H.K. lines from MgO. 

Other simplifications assumed in the theory, such as 
those due to the two-wave approximation and the 
approximate forms of the structure factors for Kikuchi 
patterns, should be more refined for quantitative dis- 
cussion. In this respect, however, more quantitative 
experimental data should be accumulated. 
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Theoretical expressions for the normalized form of the discrepancy index R2 of Wilson have been 
obtained for crystals containing heavy atoms of similar scattering power, with the heavy-atom part of 
the structure taken as the trial model. The results obtained are applicable for crystals belonging to 72 space 
groups of the triclinic, monoclinic and orthorhombic systems. Expressions for two limiting situations, 
namely complete relatedness and complete unrelatedness, have been tabulated for the commonly 
occurring cases corresponding to the number of heavy atoms in the asymmetric unit being one or two. 
Theoretical curves for this index as a function of the fractional heavy-atom contribution are also given 
for the various cases. 

Introduction 

Wilson (1969) suggested the discrepancy index R2 
(which is the ratio of the sum of the squares of the dif- 
ferences in the observed and calculated intensities over 
the various observed reflexions to the sum of the 
squares of the observed intensities) for use in crystal 
structure analysis, since it is the simplest index to 
manipulate theoretically. He has also considered the 
effect of a badly misplaced atom on this index. 

Parthasarathy & Parthasarathi (1972) (hereafter ab- 
breviated as PP, 1972) have worked out theoretical 
expressions of this index for crystals containing a few 
(i.e. 1 or 2) or many heavy atoms in the unit cell, and 
their final expressions (Table 1 of PP, 1972) are valid 
for triclinic space groups only. Since organic mol- 
ecules crystallize more frequently in monoclinic or 
orthorhombic than in triclinic space groups, it would 
be useful to work out the values of this index* for these 
space groups corresponding to the commonly occur- 

* Contribution No. 380 from the Centre of Advanced Study 
in Physics, University of Madras, Guindy Campus, Madras 
600025, India. 

* The theoretical evaluation of other possible types of dis- 
crepancy indices for space groups of higher symmetry seems 
to be too complicated to be carried out at present. 
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ring case of a crystal containing a few (1 or 2) heavy 
atoms in the asymmetric unit (besides a large number 
of light atoms) taking the trial model to consist of the 
heavy atoms alone. In this paper we shall therefore 
obtain the theoretical expressions of this R index as a 
function of a~, which is the fractional heavy-atom con- 
tribution to the local mean intensity. We shall however 
consider the index in the normalized form (see next 
section for the definition of the normalized index) 
since Srinivasan & Ramachandran (1965) have shown 
that the normalization procedure has certain advan- 
tages. Owing to theoretical difficulties we shall not 
consider the general case of an imperfectly related trial 
model. We shall consider here two limiting situations, 
namely, when the model (consisting of the heavy atoms 
alone) is completely correct (i.e. the related case, 
referred to as the R case) and when the model is com- 
pletely wrong (i.e. the unrelated case, referred to as the 
UR case). We shall neglect errors in the observed 
data, since at this stage of structure analysis, the con- 
tribution to the R index due to the incompleteness of 
the trial model is much greater than that arising from 
the random errors in the observed intensities. 

The notation in this paper closely follows that in 
PP (1972). Thus the heavy atoms constituting the 
model are denoted by the symbol P and the true 
structure by N. 

Derivation of the theoretical expressions 

Consider a crystal containing N atoms in general posi- 
tions, of which P are heavy atoms and the remaining 
Q(= N - P )  are light atoms of similar scattering power. 
Let s be the symmetry number of the space group, so 
that P/s (=p,  say) and Q/s (=q, say) respectively re- 
present the number of heavy and light atoms in the 
asymmetric unit. Following the normalization proce- 
dure of Srinivasan & Ramachandran (1965), we define 
the normalized R2 index, denoted by/~2, as 

/~2= ~ (IN--IC/a~)Z/ ~ 1~, (1) 
hkl hkl 

which may be compared with equation (2) of PP 
(1972). Equation (1) can be rewritten in terms of the 
normalized intensity variables zN and z c as 

f{z = ((ZN-- zC)Z>/ <z~ } . (2) 

On simplification (2) yields 

&=[<zb+<z~>-2<z~>]/<zb . (3) 

Since FN = Fp + FQ, it follows that 

ZN=a~Z e --}- a~ZO -}- 2 o - t o ' z V ' z ; , z  0 epo (4) 

where 
ev o = cos (0Cp- ao) for NC 

=SvSo for C. (5) 

Here the symbols C and NC denote centrosymmetric 
and non-centrosymmetric space groups respectively. 

Since Fe and FQ are independent contributions to the 
structure factor FN, it follows from (5) that 

(eva> = 0 for C and NC (6) 

<e~o > = 1 for NC 

=1 for C .  (7) 

Making use of (4) and (6) and the known property that 
(ze}= ( zo}= 1 it can be shown that 

2 4 2 4 2 2 2 <zN>=a,(zv>+a2<zo>+2a, a2[l +2@~Q>]. (8) 

Since the Q atoms are taken to be of similar scattering 
power and sufficiently large in number, F o follows the 
acentric or centric distribution of Wilson (1949) 
according as the crystal is non-centrosymmetric or 
centrosymmetric. Hence we have 

<z~> = 2 for NC 
=3 for C. (9) 

Making use of (7) and (9) in (8) we obtain 

(z2>=aa(zZ>+ Zaa2+4azaz2 for NC 
= o4<zb  + 3o~, + ~ 6alaz for C. (10) 

For a model of the related type Fe c = Fe so that ze c = 
zv. Hence by making use of (4) and (6) we obtain 

(zNzC>=<ZNZv>=a~<z2>+a~ . (11) 

However, if the model is of the unrelated type zu and 
z c will be independent random variables so that 

(ZNZ~}=(ZN} (Z~>= 1 . (12) 

Since the model contains the same number and types 
of P atoms as the given structure, it follows that even 
for an unrelated model 

<z~ > = (zCZ> . (13) 

Making use of (10)-(13)in (3) and simplifying, we ob- 
tain the following results. 

Related case 

/~z= (1+a,4--2a~) <z~,}-2a'~+2a~ 
- a4(z~5-Sr_-2_2~- ~ ..................... for NC 

_ (1 + a l - 2 a ~ )  <z~)+ 1 -  3a~ + 2a~ for C. 
a4(z~,) + 3 -  3a 4 

(14) 

Unrelated case 

(1 +a~) <z~,}-2a~ for NC 
a4<z~,}+ 2 - 2 a ~  

( l + a  4) <z~,}+ 1 - 3 a  4 for C. 
aa(zZv)+ 3 -  3a~ 

(15) 

The expressions (14) and (15) involve the quantity 
(z~> which is determined by the space-group symme- 
try, number (p) of heavy atoms in the asymmetric unit 
and their scattering powers. Assuming the P atoms to 
occupy general positions, subject to the space-group 
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symmetry, the values of (z~,) could be obtained from 
the results in Table 1 of Foster & Hargreaves (1963b) 
or those in Table 2 of Parthasarathy (1973). When all 
the P atoms are of the same type, it can thus be shown 
that ( z ~ ) = ( 2 -  l/p), ( 3 -  3/2p), ( 2 -  1/2p), ( 3 -  3/4p), 
(2-1/4p),  (2+ 1/4p) and (3 + 3/8p) for the space-group 
categories* 1, 2 . . . .  , 7  respectively. Substituting these 
in (14) and (15) we can obtain the final expressions for 
the index R2 for the various categories of space groups. 
The results thus obtained for the cases with p = 1 or 2 
are summarized in Table 1. 

D i s c u s s i o n  o f  t h e  t h e o r e t i c a l  r e s u l t s  

The  expressions in Table  1 are appl icable  for  crystals  
be long ing  to 72 space groups  o f  the triclinic, mono-  
clinic and  o r t h o r h o m b i c  systems which  can con-  
venient ly  be g rouped  into  seven categories  based on the 
form of  the t r ignomet r i c  pa r t  o f  the geometr ica l  struc- 
ture  factors  (Fos ter  & Hargreaves ,  1963a, b). O f  these 
the categories  1, 3, 5 and  6 co r respond  to non-cent ro-  
symmetr ic  space groups  while the rest co r respond  to 
cen t rosymmet r i c  space groups.  I t  is seen tha t  for  the 
ca tegory  1, if  p--- 1, the  expressions for  the/~2 index for 
the related and  unre la ted  cases become identical .  This  
is to be expected since in space g roup  P1 wi th  one 
heavy  a tom in the uni t  cell, the  origin can  be chosen 
on the heavy  a tom itself  bo th  in the s t ructure  and  the 
model .  The  var ia t ion  of  the/~2 index with  a 2 is shown 
in Fig. 1 for  the var ious  categories  of  space groups  
(except ca tegory  1 which  is a tr ivial  case) for the case 
p - - 1 .  The  co r re spond ing  curves for the case p = 2 are 
shown in Fig. 2. A s tudy  of  these figures shows tha t  in 

* These numbers correspond to the serial numbers in column 
1 of Table 1 of Foster & Hargreaves (1963b). 
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Fig. 1. The variation of the/~2 index as a function of the heavy- 
atom contribution 0 .3 for the six categroies of space group 
belonging to the triclinic, monoclinic and orthorhombic 
systems for the case with p =  1. The numbers 2 to 7 on the 
curves represent the space-group category numbers. The 
values of/~2 for 0.~=0 and 1 are also entered in the figure. The 
representation of the curves is as follows: Related model 
belonging to non-centrosymmetric space groups - - ;  
Unrelated model belonging to non-centrosymmetric space 
g[oups . . . .  ; Related model belonging to centrosym- 
metric space groups . . . . . . .  ; Unrelated model belonging to 
centrosymmetric space groups . . . .  . 

Tab le  1. Final expression for the R2 index for the related and unrelated cases corresponding to the seven 
categories of  space group belonging to the triclinic, monoclinic and orthorhombic systems when the number (p) 

of  heavy atoms in the asymmetric units is 1 or 2 
Space-group p = 1 

category number R case UR case 

1 1 - a {  1 - a 4  
2 - o'4 2 - 0.1 

5 - 2a2 - 30.~ 5 - 3a4t 2 
3(2 - o -4) 3(2 - (714) 

3 3-2a~-a~ 3-al 
4 - a 4 4 - a4 

4 13 - lOa~- 3a~ 13 - 3o4 
3 (4 - a4) 3 (4 - a4) 

7 - 6a2- a4 7 - ai 
8 - a4 8 - a ]  

9-10a2+a4  9 + a  4 

8+a~ 8+a~ 

3 5 -  38a~+ 3a 4 35 + 3a 4 

3(8 + a4) 3(8 + a 4) 

p = 2  
R case UR case 

3 - 2a~ - a~ 3 - a~ 

4 - 0.4 4 - o 4 

13 -- 10a2-- 3a4 13--3a4 
3(4 - a ~ )  3 ( 4  - o 4 )  

7-6~ff-m ~ 7-a~ 
8 - a ~  8 - 0.4 

29 - 26a2- 3a4 29 - 3a4 

3(8 - o'~) 3(8 - o-~) 

15-140.2-0.4 15 -  0.~ 
16-o'~ 16-o'~ 

17-18a2+a~ 17+a4 
16+a4 16+a  4 

67 - 70a2+ 3a 4 67 + 30.4 
3(16 + try) 3(16 + a 4) 
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Fig. 2. The  value of the _~ index as a funct ion of  a~ for the 
seven categories of  space group for the case with p = 2. For  
o ther  details see the capt ion to Fig. 1. 

the normal range 0 < a~ < 0.5, the curves for the various 
categories differ significantly. This points to the need 
for calculating the value of the R index for the given 
crystal, taking into account the space-group symmetry 
in order to improve the effectiveness of the R index in 
the test for the correctness of the positions of the heavy 
atoms. 

The situations considered for obtaining the curves 
marked 2 in Figs. 1 and 2 of PP (1972) for the un- 
normalized index R2 correspond respectively to those 
for curves marked 2 and 1 in Figs. 1 and 2 of the pres- 
ent paper. A comparison of the relevant curves in this 
paper and in PP (1972) shows that, for the unrelated 
case, the normalized index/72 (unlike the unnormalized 
index R2) remains practically fiat throughout the range 
0 to 1 of a~. Thus particularly when a~ is not large, say 
a~ < 0.5, the curves for the R and UR cases for a given 
situation (i.e. a~ and p being fixed) are closer in the case 
of the unnormalized than in the normalized index. 
Hence when a~ is not large, which is generally the case, 
the normalized index/~2 seems to be preferable to the 
unnormalized index R2. Such a conclusion has in fact 
been reached in the case of the normalized and un- 

normalized forms of the conventional R index by 
Srinivasan & Ramachandran (1965). It may incident- 
ally be noted that when a~ -+ 1,/72 ~ Rz. 

A study of Figs. 1 and 2 also reveals that in crystals 
of a given type (i.e. C or NC) the distinction between 
the curves for the R and UR cases for any given values 
of p and a~ is more marked for categories of space 
groups of higher symmetry. For example, for non- 
centrosymmetric crystals when a~*=0"3 and p =  1, the 
differences in the values of the/~2 index for R and UR 
cases are respectively 0.154, 0.228 and 0.371 for the 
categories 3, 5 and 6. Similarly these values for centre- 
symmetric crystals are respectively 0.105, 0.256 and 0.470 
for the categories 2, 4 and 7. It is seen from Fig. 2 
that, for p = 2, the value of/~2 for the R case for a 
given value of a~ is always greater for centrosymmetric 
than for non-centrosymmetric space groups. A similar 
statement holds good for the UR case also. This 
property has in fact been observed by Wilson (1950) in 
the case of the conventional R index for a completely 
wrong structure (i.e. UR case). It is however seen from 
Fig. 1 that such a property is not universal for the case 
p =  1. For example, for the UR case, the curve for 
category 2 (i.e. the crystal is of the C type) is below that 
of category 5 or 6 (i.e. the crystal is of NC type). 
Similarly for the R case, the curve for category 2 is 
below that for category 6 when a~<0.3 (Fig. 1). This 
shows that for crystals having asymmetric units of the 
same complexity and with one heavy atom per asym- 
metric unit, the value of the R2 index for a non-centre- 
symmetric crystal belonging to category 5 or 6 ~ould 
be greater than that for a centrosymmetric crystal 
belonging to category 2. 

One of the authors (V.P.) wishes to thank the Coun- 
cil of Scientific and Industrial Research, New Delhi, 
India, for financial support. 

* For  crystals conta in ing  a toms in general  posit ions the 
value of  tr~ is de te rmined  by the asymmetr ic  unit. 
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